

HPE course number U4195S Course length 5 days Delivery mode ILT View schedule, local pricing, and register View related courses View now

Why HPE Education Services?

- IDC MarketScape leader 4 years running for IT education and training*
- Recognized by IDC for leading with global coverage, unmatched technical expertise, and targeted education consulting services*
- Key partnerships with industry leaders
 OpenStack®, VMware®, Linux®, Microsoft®,
 ITIL, PMI, CSA, and (ISC)²
- Complete continuum of training delivery options—self-paced eLearning, custom education consulting, traditional classroom, video on-demand instruction, live virtual instructor-led with hands-on lab, dedicated onsite training.
- Simplified purchase option with HPE Training Credits

Become familiar with the system load balance approach and performance tuning concepts for your HPE NonStop system. Learn how to capture and analyze performance data, then adapt the adjustments to maximize performance and increase system utilization. Topics include Measure, Measure entities, queuing theory, TPM, RPM, ViewSys, Web ViewPoint practical approaches to system tuning, and using performance tools. The course is 60% lecture and 40% hands-on labs using NonStop servers.

Audience

- System managers, technical support, and performance analysis personnel
- Systems and application designers and developers

Prerequisites

- Concepts and Facilities for HPE NonStop Systems (U4147S) and
- HPE NonStop NB-series Server Administration I (HG776S) and HPE NonStop NB-series Server Administration II (HG777S) or
- Equivalent system administration courses or experience

Course objectives

At the conclusion of this course, you should be able to:

• Apply the basic tuning principle for HPE NonStop

- Analyze Measure's key entities and use Reload Analyzer
- Apply several basic queuing theory formulas
- Analyze disk cache-hit ratios and fragmentation
- Calculate a volume's true write cache-hit ratio
- Analyze process priorities and process memory consumption
- Identify processes with long \$RECEIVE queues
- Evaluate TCP process and server class parameters for best performance
- Use Measure, SQLCI, and MXCI to analyze HPE NonStop SQL/MP and HPE NonStop SQL/MX performance
- Identify positive and negative factors in application performance

Performance Analysis and Tuning for HPE NonStop Systems U4195S

^{*}Realize Technology Value with Training, IDC
Infographic 2037, Sponsored by HPE, January 2016

Course data sheet Page 2

Benefits to you

- Learn how to regularly monitor your HPE NonStop systems and quickly recognize problems so users experience smooth IT operations
- Effectively utilize the range of available performance tools
- Learn practical performance tuning procedures reinforced through extensive hands-on lab sessions
- Optimize your HPE NonStop systems by identifying and removing performance bottlenecks

Course data sheet Page 3

Detailed course outline

Module 1: Performance Analysis Introduction	Steps in tuning a NonStop system and basic tuning principle
	Two aspects of response times
	Service Level Agreement (SLA) options
	Understanding your system(s)
	Measure subsystem and its entities
Module 2: CPU Subsystem	Measure's CPU entity
	Processor queueing and its relationship to queueing theory
	Processor's memory subsystem
	Physical and logical disk loss and CISC and EPIC processes
	Measure's processor data in a matrix
	NSMA architecture shown in Measure
Module 3: Queueing Theory	Queueing theory notation and basic queueing theory formulas
	Slow and fast device queueing
Module 4: Disk Subsystem	Integrity NonStop NS-series disk architecture
	NB-series systems storage CLIMs
	DISC and SERVERNET entities and Measure's disk data in a matrix
	Disk cache-hit ratios and buffering non-audited files
	Disk settings with SCF and disk fragmentation
Module 5: Disk Files	Key-sequenced file structure and buffered/unbuffered files
	Calculating a volume's true write cache-hit ratio
	Locating heavily-written and unbuffered files
	File partitioning, file fragmentation, and Reload Analyzer
Module 6: Processes	TACL RUN command options and analyzing process priorities
	Mixed Workload Enhancement (MWE)
	Key Measure PROCESS counters
	Analyzing process memory consumption
	Processes with long \$RECEIVE queues and process acceleration
	Measure's PROCESS data in a matrix
Module 7: Pathway Tuning	TCP process parameters for best performance
	Server class parameters for best performance
	Pathway statistics and establishing links to server processes
	Application Cluster Services (ACS) features
Module 8: HPE SIM and Other Performance Tools	HPE Systems Insight Manager (SIM) performance essentials
	ViewSys, Web ViewPoint, Peek, and Enform
	Guardian Performance Analyzer (GPA)
	Tandem Performance Data Collector (TPDC)
	Tandem Performance Management (TPM)
	Availability Stats and Performance (ASAP)
	Automatic Process Balancer (APB)
	Disk Prospector (Diskpro) and Real-time Process Monitor (RPM)
	Tandem Capacity Model (TCM)

Course data sheet

Module 9: Application Tuning • Application performance—positive and negative factors • Meascom output for DISCOPEN and FILE entities • Meascom output for PROCESSH and USERDEF entities · Meascom output for TMF entity • Remote Database Facility (RDF) performance issues **Onsite Delivery Equipment Requirements** NonStop server with four processors and six disk volumes G06.28, H06.15, J06.04 or later with Measure, TPDC, and RPM installed · Private class requests: • Might require up to two days set-up time on a customer system prior to the class • Access to a supergroup logon for the instructor

Next steps

• Consider attending the other optional and advanced learning courses in the HPE NonStop operations management curriculum

Learn more at hpe.com/ww/learnnonstop

Follow us:

© Copyright 2015–2016 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries. $The \ Open Stack \ Word \ Mark \ is either \ a \ registered \ trademark/service \ mark \ or \ trademark/service \ mark \ of \ the \ Open Stack \ Foundation, in$ the United States and other countries and is used with the OpenStack Foundation's permission. We are not affiliated with, endorsed $or\ sponsored\ by\ the\ OpenStack\ Foundation\ or\ the\ OpenStack\ community.\ Pivotal\ and\ Cloud\ Foundry\ are\ trademarks\ and/or\ property and\ foundation\ or\ the\ OpenStack\ community\ property\ for\ property$ $registered\ trademarks\ of\ Pivotal\ Software, Inc.\ in\ the\ United\ States\ and/or\ other\ countries.\ Linux\ is\ the\ registered\ trademark\ of\ Linux\ in\ the\ trademark\ of\ Linux\ of\ the\ trademark\ of\ the\ trademark\$ Torvalds in the U.S. and other countries. VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other third-party trademark(s) is/are property of their respective owner(s).