

Building Machine Learning Models Workshop H38HPS

View related courses	View now
View schedule, local pricing, and register	View now
Delivery mode	ILT/VILT
Course length	2 days
HPE course number	H38HPS

Why HPE Education Services?

- Comprehensive worldwide <u>HPE technical</u>.

 IT industry and personal development training.

 Training.
- Training and certification preparation for ITIL®, Security, VMware®, Linux, Microsoft and more
- Innovative <u>training options</u> that match individual learning styles
- Anytime, anywhere remote learning via <u>HPE Digital Learner</u> subscriptions
- Verifiable <u>digital badges</u> for proof of training, skill recognition and career development
- Simplified purchase options with HPE Training Credits

This deep-dive course gives you the necessary hands-on experience to design and evaluate machine learning models. We start by managing datasets and applying data engineering best practices to transform the data into a learnable state. Then, we build intelligent models on the top of these datasets and validate them against our business goals. The hands-on labs enable you to manage the end-to-end lifecycle of a machine learning (ML) project.

Audience

This course is ideal for software engineers, IT professionals, data engineers, database professionals, developers and testers, solution architects, Al and automation enthusiasts, statisticians and other professionals looking to build machine learning capabilities.

Prerequisites

Basic understanding of any programming or scripting language

Course objectives

At the end of this training, you will be able to:

- Understand and apply various ML algorithms
- Apply techniques to build intelligent systems
- Gain knowledge of supervised and unsupervised learning,
- Learn how to evaluate and improve the performance of models
- Apply exploratory data analysis (EDA) and feature engineering techniques

Course data sheet Page 2

Detailed course outline

Module 1	A Gentle Introduction to Machine Learning	The data science ecosystem
		Types of data analytics
		Difference between artificial intelligence (AI) and machine learning (ML)
		Machine learning types
		ML toolkit
Module 2	The Machine Learning Pipeline	The stages of machine learning
	The Machine Learning Expense	Data cleaning strategies
		Qualities of good data
		Statistics for ML
		• Statistics for IVIL
Module 3	Building a Machine Learning Model	• Classification
		Regression
		• Clustering
Module 4	Exploratory Data Analysis (EDA)	Why do we need EDA?
		 Methodology
		EDA best practices
Module 5	Feature Selection and Feature Engineering	Definitions
		Permutation-based feature selection
		 Principal component analysis (PCA) and linear discriminant analysis (LDA)
Module 6	Normalization Methodologies	Linear scaling
		• Clipping
		Log scaling
		• Z-score
Module 7	Metrics to Evaluate ML Models	Regression metrics
		Classification metrics
		Ranking
Module 8	Types of ML Algorithms	Linear and logistic
		Decision tress and random forest
		Support vector machines
		K-means clustering
		Probabilistic AI
		Probabilistic AITime-series analysis
Module 9	Optimizing ML Models	
Module 9	Optimizing ML Models	Time-series analysis
Module 9	Optimizing ML Models	Time-series analysis The need for optimization
Module 9	Optimizing ML Models	Time-series analysis The need for optimization Bias and variance trade-off
Module 9	Optimizing ML Models	Time-series analysis The need for optimization Bias and variance trade-off Overfitting and underfitting

Page 3 **Course data sheet**

Learn more at hpe.com/ww/learnbigdata

Follow us:

© Copyright 2023 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.