
HPE Content Pack 
number

Content Pack 
length

Why HPE Education Services?

 • IDC MarketScape leader 5 years running 
for IT education and training*

 • Recognized by IDC for leading with 
global coverage, unmatched technical 
expertise, and targeted education 
consulting services*

 • Key partnerships with industry leaders 
OpenStack®, VMware®, Linux®, Microsoft®, 
ITIL, PMI, CSA, and SUSE

 • Complete continuum of training delivery 
options—self-paced eLearning, custom 
education consulting, traditional 
classroom, video on-demand instruction, 
live virtual instructor-led with hands-on 
lab, dedicated onsite training

 • Simplified purchase option with 
HPE Training Credits

Realize Technology Value with Training, IDC 
Infographic 2037, Sponsored by HPE, October 2017

*

Content Pack data sheet

Learn more

Content Pack 
category

HPE Digital Learner Chef and 
Puppet for DevOps Content Pack 

In this course, you will learn how to automate the configuration, 
provisioning and management of physical and virtual servers 
using Chef and Puppet

CP027

26 Hours

View now

Audience
System administrators, DevOps 

personnel, operations staff, managers, 

software developers or testers

Content Pack objectives
• Learn the basics of Chef including

vocabulary, installations, roles and tools, and
create recipes and cookbooks

• Use Chef Delivery to continuously deliver
applications and infrastructure

• Use the Chef development kit and tools such
as Test Kitchen, ChefSpec, and Foodcritic

• Use Chef analytics to provide real-time
visibility into what is occurring on the Chef
server

• Learn advanced Chef administration

• Identify components of the Puppet
architecture

• Identify the major Puppet commands and
how to execute them

• Learn to configure Puppet and manage files

• Learn to build and administer a complex
Puppet installation

• Puppet configuration refactoring

Category 2

http://www.hpe.com/ww/digitallearner


Content Pack data sheet Page 2

Working with Chef: Fundamentals 

Chef is a configuration management tool that is used to 
streamline the task of configuring and maintaining company 
servers. Chef uses recipes or cookbooks to describe how Chef 
manages server applications and utilities, and how they are 
to be configured. In this course, you will learn how to create 
recipes and cookbooks and understand the Chef vocabulary. 
You will also learn about various Chef installations, Chef roles 
and Chef tools.

 • Describe Chef and how it is used for configuration 
management

 • Recognize that Chef uses an imperative language 
and distinguish between imperative and declarative 
languages

 • Describe the contents of recipes and cookbook and 
how Chef uses them when performing configuration

 • Describe the terms used by Chef for performing 
automated configuration management

 • Identify other popular DevOps tools used for 
automated configuration management

 • Describe how Chef functions and how it is 
supported in operating systems such as Linux and 
Windows

 • Compare Chef’s cloud-based functionality to 
traditional operating systems

 • Compare the different Chef platforms and decide 
which one to use

 • Recognize the different methods of installing 
Hosted Enterprise Chef

 • Describe how Chef Solo works 

 • Work with the Chef Administrator’s Workstation

 • Identify how Enterprise Chef runs, and how it is 
used 

 • Distinguish between open source Chef and other Chef 
installations

 • Describe the features of hosted enterprise Chef

 • Create a node to be managed by Chef

 • Identify how Chef uses Knife to create cookbooks

 • Describe how Chef uses per-environment runlists

 • Identify how Chef determines if a configuration is out of 
policy, and how Chef reapplies policy to the desired state

 • Describe the different kinds of Chef nodes

 • Identify and retrieve Chef node attributes

 • Create and upload Chef roles

 • Use the Chef development kit and tools such as Test 
Kitchen, ChefSpec and Foodcritic

 • Use Chef analytics to provide real-time visibility into what is 
occurring on the Chef server

 • Use the Chef management console for the management of 
nodes, roles, data bags, environments and cookbooks

 • Use Chef Delivery to continuously deliver applications and 
infrastructure

 • Work with Chef and create a per-environment runlist

Detailed Content Pack outline

Working with Chef

Working with Chef Analytics

The demand for IT personnel having an in depth knowledge 
of Chef and Chef Analytics is increasing day by day. Chef 
Analytics is a configuration management automation tool 
used for auditing changes on a Chef Server. In this course, 
you will learn the basics of Chef Analytics as well as its 
installation, configuration and set up of simple alerts and 
notifications.

 • Describe the purpose, architecture, components 
and network topology of Chef Analytics

 • Distinguish between noteworthy Chef Analytics 
actions and events

 • Describe how action logs are generated and 
recognize the Chef pipeline architecture

 • Describe the network and system prerequisites for 
installing Chef Analytics

 • Prepare the Enterprise Chef Server to communicate 
with Chef Analytics

 • List the steps to install Chef Analytics

 • List the post installation steps of Chef Analytics 
that need to be performed on the Enterprise Chef 
server

 • Use and deploy configuration files on the Chef 
Analytics server

 • Describe how hostnames are used in Chef Server/
Chef Analytics architecture

 • Verify successful installation of Chef Analytics by 
using command line utilities

 • Log in to the Chef Analytics server and perform 
simple navigation

 • Create a Chef client instance by starting Chef Client 
on a managed node 

 • Create an SMTP mail server to send Chef Analytics 
notifications

 • Create simple notifications

 • Create simple rules

 • Create a simple trigger

 • Recognize how audit-mode can be used to enforce server 
compliance

 • Use Chef Tools such as Virtual Box, Vagrant and Test 
Kitchen

 • Recognize how to create a cookbook for server auditing

 • Create and apply recipes to a Test Kitchen instance

 • Create and use a web server cookbook for auditing

 • Describe how to make updates to a web server to enforce 
compliance

 • Create an audit alert when auditing a server for compliance 
fails

 • Define audit triggering rules and describe what happens 
when an audit fails

 • Recognize how audit rules are enforced in an auditing 
cookbook

 • Create a recipe and a cookbook that will enforce compliance 
on a server and send a notification if the server is not 
compliant 

Chef - Beyond the Basics



Content Pack data sheet Page 3

Chef Advanced Administration 

Since Chef is an ace configuration management tool, an in 
depth knowledge of its advanced features is a fundamental 
requirement for a skilled DevOps engineer. In this course, 
you will learn the inner workings of Chef, including managing 
cookbooks and using troubleshooting tools. This course 
also covers virtualization, user management and server 
configuration.

 • Inspect cookbooks and manage cookbook 
dependencies

 • Use Chef and Vagrant together for virtualization 
and automated provisioning

 • List the various ways to delete nodes from a Chef 
server

 • Create complex Chef recipes and cookbooks

 • Freeze/unfreeze a cookbook and describe the 
benefits of doing so

 • Use roles to group nodes with the same function 
into environments

 • Describe how a Chef client can automatically be 
started as a daemon

 • Use Chef shell to set runtime breakpoints within 
recipes

 • Describe how to handle multiple versions 
cookbooks

 • Use Test Kitchen as a test harness tool for your 
workflow

 • Use ChefSpec to test resources and recipes in a 
simulated Chef Client run

 • Use Foodcritic to find common syntax and best 
practice problems in your cookbooks

 • Describe the rules and best practices for writing 
Chef DSL 

 • Prepare and evaluate Cookbooks using best practices

 • List the individual steps that occur when the nodes 
managed by Chef server are provisioned 

 • Use an environment cookbook to manage application 
configuration

 • Create Chef users

 • Use configuration files and packages in a Chef installation

 • Implement high availability within the Chef architecture to 
provide server failover support

 • Recognize how Chef will allow users to login with their 
network credentials (LDAP)

 • Describe how the Chef server is authenticated using the 
Chef server API

 • Recognize how the Chef community uses GitHub to share 
code and to collaborate on projects

 • Describe how Bitbucket can be used as a private code 
repository for Chef cookbooks

 • Describe how Chef functionality can be extended into other 
DevOps tools

 • List the places where major Chef training events and 
conferences are held

 • Create an alert and notification process in a control

First Steps with Chef

How does expressing Infrastructure as Code with Chef 
accelerate building, deploying and managing infrastructure? 
This course focuses on executing Chef code with the 
chef-client and introduces the DSL for writing recipes and 
cookbooks. 

 • Describe how automation and version control 
contribute to DevOps

 • Describe the Chef distribution model and the 
declarative syntax used in writing Chef recipes

 • Install the Chef Development Kit (ChefDK)

 • Use the package and file resources inside of a Chef 
Recipe

 • Describe Ruby basics such as variables, arrays and 
objects

 • Identify how recipes are packaged and distributed 
with cookbooks

 • Identify best practices of using Git for version control

 • Deploy a cookbook using the chef-client in local mode

 • Work with system profiling with Ohai and accessing node 
object attributes

 • Use the cookbook file, remote file, and template Chef 
resources to manage files

 • Manage dynamic file creation using the template resource

 • Refactor recipes to use node attributes instead of hard-
coded values

 • Build a simple Apache cookbook that configures a “hello, 
world” page to serve on the localhost

Chef Server Basics

Using a Chef server can accelerate the process of deploying 
cookbooks while providing visibility into the state of your 
infrastructure. This course focuses on Chef server policy and 
remotely deploying cookbooks.

 • Describe why a Chef server is used and the 
cookbook distribution model

 • Create an account on hosted Chef

 • Configure a chef-repo using the Chef server starter 
kit

 • Describe the chef-repo components and the user 
authentication model

 • Use the knife command to view Chef server policy 
and node details

 • Upload cookbook policy to the Chef server using 
knife 

 • Attach nodes to the Chef server with the knife bootstrap 
command

 • Configure run-lists for nodes in bulk with roles

 • Separate cookbook versions using Chef environments

 • Search for Chef server policy with knife

 • Refactor a recipe to utilize search to create dynamic policy 
with a Chef server

 • Create custom searchable datasets with data bags

 • Build a users cookbook that searches through a data bag to 
configure users and groups

Mastering DevOps with Chef



Content Pack data sheet Page 4

Community Cookbooks and Chef Server Patterns 

The best practices of using a Chef Server are directly related 
to the reusability of cookbook recipes and components. This 
course focuses on the effective use of community cookbooks 
with a Chef server.

 • Describe the reusability of Chef cookbooks and best 
practices around utilizing community code

 • Search for cookbooks on supermarket.chef.io

 • Distinguish the differences between library and 
application cookbooks

 • Distinguish why community cookbooks should be 
called as dependencies instead of forking upstream 
code bases

 • Configure and install dependencies in the metadata 
file with berkshelf

 • Manage Chef server cookbook versions with 
berkshelf

 • Configure the Berksfile to point at a local 
dependency instead of a Chef Supermarket 
dependency 

 • Use node attribute precedence when overwriting cookbook 
attribute values

 • Assign node attributes at the role or environment level

 • Identify the limitations of using roles and explain the 
purpose of a role cookbook

 • Configure the chef-client as a service with a community 
cookbook

 • Configure the logging location on a node directly or as a 
node attribute with the chef-client cookbook

 • Configure a wrapper for the test haproxy community 
cookbook to redirect traffic to a simple web server

Test-Driven Cookbooks 

The most important role of a Cookbook developer is to 
test code before it enters production. This course focuses 
on testing Chef cookbooks consistently and effectively. 

 • Use Behavior-Driven Development (BDD) in the 
context of Chef cookbook development

 • Identify the Chef Development Kit tools used for 
unit and integration testing

 • Generate unit and integration tests inside of a 
cookbook

 • List the components of the .kitchen.yml file

 • Configure a Test Kitchen driver to support 
deploying to physical, virtual or cloud machines

 • Execute the chef-client on a virtual machine 
generated by Test Kitchen

 • Define an integration test and verify the results with 
kitchen login 

 • Use the InSpec compliance language to write simple 
integration tests

 • Refactor a recipe and run kitchen verify with a test-driven 
approach

 • Execute the RSpec utility to test Chef recipes in memory

 • Utilize a simple formula to write ChefSpec tests

 • Configure the Pry Ruby gem to insert a breakpoint into a 
recipe

 • Use ChefSpec to check case statement evaluation of node 
attributes

 • Use Test Kitchen to verify a simple Apache cookbook on 
Ubuntu and Centos

Implementation and Benefits 

Puppet is an open source configuration management tool. 
Puppet is closely coupled with the DevOps methodology 
and is implemented with its own declarative language (Ruby). 
Mostly used by system administrators, Puppet automates 
the configuration, provisioning and management of physical 
and virtual servers. With automation, Puppet eliminates the 
errors that occur with manual tasks. In this course, you will 
learn the core concepts of Puppet and how to configure 
Puppet for your organization.

 • Describe Puppet and the problems it solves

 • Describe the core functional concepts of Puppet 
and the related vocabulary

 • Compare Puppet with other DevOps configuration 
management tools

 • Identify organizations who use Puppet and 
how Puppet is integrated into their DevOps 
methodology

 • Use declarative, readable Puppet DSL (Domain 
Specific Language) to describe system resources 
and state

 • Identify the different components of the Puppet 
architecture

 • Describe the basic functionality of Puppet nodes 
and recognize how they are used

 • Distinguish between cloud and network installations

 • Describe the features of open source Puppet

 • Identify the uses and features of Puppet Enterprise 
(PE)

 • Recognize the different versions of Puppet and 
their features

 • List the general installation requirements of Puppet

 • Install Puppet on a Linux system 

 • Describe how to install Puppet on the Windows operating 
system

 • Identify the major Puppet commands and how to execute 
them

 • List the steps needed to start and stop Puppet

 • Work with Puppet to make configuration changes on a 
machine

 • Work with configuring nodes to add hosts to a puppet setup

 • Describe the predefined Puppet resources and how they 
are used

 • Describe from a conceptual level how Puppet uses manifests

 • Identify the different methods in grouping resources within 
a manifest

 • Describe what a Puppet class is and how it is used

 • Recognize how Puppet uses modules

 • Recognize how to use Puppet Forge to create and share 
Puppet modules

 • Describe how Puppet uses catalogs

 • Define pre-requirements for a Puppet installation on a local 
machine

Using Puppet



Content Pack data sheet Page 5

Configuration and Programming 

Puppet is an open source configuration management tool. 
Puppet is closely coupled with the DevOps methodology 
and is implemented with its own declarative language (Ruby). 
Mostly used by system administrators, Puppet automates 
the configuration, provisioning and management of physical 
and virtual servers. With automation, Puppet eliminates the 
errors that occur with manual tasks. In this course, you will 
learn how to configure Puppet and manage its resources. 
Puppet programming, implementation and troubleshooting 
techniques are discussed and demonstrated.

 • Describe how coding is performed in Puppet and 
how it is managed

 • Describe the core concepts of Puppet service 
management and the related vocabulary

 • Identify Puppet resources and how to handle their 
dependencies

 • Identify the contents of a Puppet configuration file 
and how to manage it

 • Identify the Package-File-Service pattern and how it 
is used in Puppet development

 • Work with an end-to-end example of a Puppet task

 • Create and set up a user account

 • Identify how Puppet uses SSH

 • Describe how SSH keys are distributed in a Puppet 
installation

 • Distinguish between and manage user accounts

 • Work with exec resources to run commands

 • Work with cron resources to run scheduled jobs

 • Recognize and deploy file tree structures

 • Use different kinds of Puppet templates to create 
configuration files

 • Describe the syntax of flow of control statements

 • Use program operators in Puppet

 • Identify the different expressions used in Puppet

 • Use variables in Puppet

 • Recognize how to substitute expressions

 • Describe the different kinds of collections

 • Work with different kinds of Puppet reports

 • Describe the different Puppet modes

 • Identify how to print messages

 • Work with different methods of monitoring Puppet

 • Describe common runtime failures

 • Establish a configuration management solution using 
Puppet 

Working with Puppet Agent and Puppet Apply 

Since the demand for IT personnel having an in depth 
knowledge of Puppet is exploding, knowing the advanced 
features of Puppet is an essential requirement for skilled 
developers and operations managers. In this course, you 
will learn the intermediate and advanced operations of 
Puppet as well as Puppet administration. This course also 
demonstrates the unique interaction between Puppet 
Server, Puppet Master, Puppet Agent and Puppet Apply.

 • Distinguish between the roles of Puppet Server, 
Puppet Master, Puppet Agent and Puppet Apply

 • Summarize the role of the Puppet Server and 
describe its relationship with Puppet Master

 • Install Puppet Server

 • Set up initial certificate and domain name for a 
Puppet Server installation

 • Review the configuration steps and describe the 
contents of each major configuration file

 • Recall the role of Ruby, and install and remove Ruby 
gems

 • Describe the types of variables used within Puppet

 • Apply control branching statements of Puppet

 • Write and call built-in and custom functions

 • Write Puppet code to apply specific configurations 
to specific nodes

 • Use Puppet code to access facts

 • Describe how Puppet scales as the number of 
nodes grow

 • Describe the certificate signing process between 
Puppet Master and Puppet Agent in detail

 • Describe how the Puppet Agent executes its main 
manifest 

 • Describe the communication between Puppet Master and 
Puppet Agent in detail

 • List the start options for Puppet Agent and describe their 
functionality

 • Use the commandline to start Puppet Agent and interpret 
commandline messages

 • Execute Puppet Agent as a service

 • Execute Puppet Agent on Linux machines as a scheduled 
cron job

 • Describe how Puppet Agent performs logging and identify 
logging configuration issues

 • Describe the functionality of Puppet Apply and its features

 • Describe Puppet Apply’s run environment and execute the 
main manifest

 • Describe how Puppet Apply communicates over the network 
and uses local collections of modules

 • Discuss how Puppet Apply handles logging and report 
handling

 • Execute the Puppet resource command to set up a Puppet 
Apply cron job

 • Create a cron job that will execute a Puppet Agent

Puppet - Beyond the Basics



Content Pack data sheet Page 6

Building and Administering a Complex Puppet 
Installation 

Since Puppet skills are so much in demand, an in 
depth knowledge of its functionality is beneficial for 
a skilled IT professional. In this course, you will learn 
the interworking of Puppet modules and resources. 
This course also covers security issues (certificates 
and SSL), Puppet reporting, virtualization and Hiera. 

 • Review the best practices in module design and 
write modules using the module generator

 • Use modules and plugins to enhance and extend 
the functionality of Puppet

 • Use the Puppet module installation tool to install 
and uninstall modules

 • Develop a module and deploy it on Puppet Forge

 • Use Puppet’s group and user resource types to 
manage group and user accounts

 • Use Puppet’s file resource type to manage folders 
and files

 • Use Puppet to edit, create and delete a scheduled 
task

 • Use Puppet’s package resource type to manage 
software packages

 • Use Puppet to manage operating system services

 • Use the internal report handlers to generate reports 
and analyze YAML

 • Create a custom report in Ruby and include it in a 
Puppet module

 • Distinguish between older report formats and the 
new report format

 • Describe the steps needed to configure external SSL 
termination on the Puppet Server

 • Distinguish the functionality of Puppet from Vagrant

 • Use Vagrant to create virtual machines

 • Prepare a Puppet manifest to be deployed on Vagrant-
created virtual machines

 • Modify Vagrant configuration to use Puppet for provisioning

 • Run Vagrant to create virtual machines provisioned by 
Puppet

 • Recognize the problems and issues that can be fixed by 
Hiera

 • Install Hiera from a package or a gem, and install Puppet 
functions

 • Describe the Hiera global configuration settings and how 
configuration files are resolved at runtime

 • Use Hiera and Puppet together

 • Create a Puppet module that will be extrapolated by Hiera

 • Create Vagrant virtual machines that will be provisioned by a 
Puppet manifest 

 • Compare the different options when configuring an external 
CA

 • Describe how Puppet Server can be configured to use 
certificates from an existing external CA

Building the Puppet Environment

 In this course, you will learn the basic concepts of automated 
configuration with Puppet. The installation and configuration 
of Puppet in the cloud are covered. Puppet facts for advanced 
server configuration are demonstrated.

 • Describe the concepts of Puppet and its 
configuration options

 • Install and configure Puppet master on Amazon 
Web Services EC2

 • Install and configure Puppet agent on Amazon EC2

 • Build out the Puppet cloud environment and get it 
all to work

 • Use the Puppet Facter utility

 • Use core Puppet facts for server configuration

 • Use custom Puppet facts for server configuration

 • Use the Puppet FACTERLIB variable for custom 
configuration options

 • Use external Puppet facts for advanced configuration 
options

 • Set a Puppet agent to be configured by a Puppet master

Configuring the Puppet Master and Puppet Agent 

Most of the functionality of Puppet is contained in the 
Puppet master and the Puppet agent. In this course, you 
will learn how to configure Puppet for automated server 
configuration.

 • Describe how Hiera works within Puppet

 • Identify how Hiera is installed and configured in 
different versions of Puppet

 • Identify the three layers of Hiera and how they are 
used

 • Create a Puppet test class to be used by Hiera

 • Code a module to be used by Puppet

 • Create classes to be used by Puppet for 
configuration

 • Create Puppet parameterized classes

 • Describe the class inheritance hierarchy

 • Describe the Puppet resources types and how they are used

 • Write code to use Puppet resources

 • Determine how to use attributes and types in Puppet

 • Write code to use custom Puppet resource types

 • Analyze the Puppet resource abstraction layer

 • Design a Puppet master/Puppet agent configuration solution

Master DevOps with Puppet



© Copyright 2019 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without 
notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements 
accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. 
Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein. 

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
The OpenStack Word Mark is either a registered trademark/service mark or trademark/service mark of the OpenStack Foundation, in 
the United States and other countries and is used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed
or sponsored by the OpenStack Foundation or the OpenStack community. Pivotal and Cloud Foundry are trademarks and/or 
registered trademarks of Pivotal Software, Inc. in the United States and/or other countries. Linux is the registered trademark of
Linus Torvalds in the U.S. and other countries. VMware is a registered trademark or trademark of VMware, Inc. in the United States
and/or other jurisdictions.

Follow us:

Detailed Content Pack Page 7

Learn more at 
www.hpe.com/ww/digitallearner 
www.hpe.com/ww/digitallearner-contentpack

CP027 A.00, February 2019

Configuring Puppet Environments and Managing Files

Puppet has robust file functionality and runs in multiple 
environments. In this course, you will learn how to get Puppet 
to work with files and how to set up and configure multiple 
Puppet environments.

 • Describe how to use environments on the Puppet 
master

 • Identify the methods of setting the client 
environment in Puppet

 • Discover how the Puppet search path works

 • Analyze how to evaluate templates

 • Define the basics of using Puppet templates

 • Build and code Puppet templates

 • Identify how EPP templates work within Puppet

 • Describe the Puppet file functions

 • Analyze the ways to deliver files with Puppet

 • Define how advanced file functionality works within Puppet

 • Use Puppet file functionality and environments

Puppet Refactoring Patterns 

There are different ways to refactor Puppet configurations. 
In this course, you will learn techniques to mitigate the risk 
and increase the success of Puppet configuration refactoring 
as it relates to the Puppet master and the Puppet agent. 

 • Analyze and use the Puppet Defined function

 • Identify how to correctly design a custom Puppet 
function

 • Code a new Puppet function

 • Describe how Puppet uses REST

 • Define the techniques for Puppet REST API 
Security

 • Describe how the Puppet file server works

 • Describe how to extend the functionality of Facter

 • Discover the ways Puppet uses local directories

 • Describe how to create Ruby-based facts

 • Describe how to provide advanced configuration with 
modules

 • Describe how to provide advanced configuration with roles 
and profiles

 • Refactor Puppet Configuration

https://www.facebook.com/search/top/?q=hpe%20technology%20services
https://twitter.com/HPE_Education
https://www.linkedin.com/company/3696898?trk=tyah&trkInfo=clickedVertical:showcase,clickedEntityId:3696898,idx:3-1-3,tarId:1468414966981,tas:hpe%20technology
http://www.hpe.com/ww/edublog
http://hpe.com/ww/contact/edu



